A capillary electrophoresis-based immobilized enzyme reactor using graphene oxide as a support via layer by layer electrostatic assembly.

نویسندگان

  • Zhengri Yin
  • Wenwen Zhao
  • Miaomiao Tian
  • Qian Zhang
  • Liping Guo
  • Li Yang
چکیده

A novel capillary electrophoresis (CE)-based immobilized enzyme reactor (IMER) using graphene oxide (GO) as a support was developed by using a simple and reliable immobilization procedure based on layer by layer electrostatic assembly. Using trypsin as a model enzyme, the performance of the fabricated CE-based IMERs was evaluated. Various conditions, including trypsin concentration, trypsin coating time, number of trypsin layers and buffer pH, were investigated and optimized. The Michaelis constant Km (0.24 ± 0.02 mM) and the maximum velocity Vmax (0.32 ± 0.04 mM s(-1)) were determined using the CE-based IMERs, and the values are consistent with those obtained using free trypsin, indicating that enzyme immobilized via the proposed approach does not cause a significant structural change of the enzyme or any reduction of enzyme activity. The presented CE-based IMERs exhibit excellent reproducibility with RSD less than 2.8% over 20 runs, and still remain 79.5% of the initial activity after five days with more than 100 runs. Using the proposed CE-based IMERs, the digestion of angiotensin was completed within 3 min, while quite a number of trypstic peptides were observed for BSA on-line digestion with an incubation time of 30 min. As identified by MS analysis, the online digestion products of BSA using the present CE-based IMER are comparable with those obtained using free trypsin digestion for 12 h incubation. It is indicated that the present immobilization strategy using GO as a support is reliable and practicable for accurate on-line analysis and characterization of peptides and proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Fabrication of Biosensor Based on Immobilized AchE on Modified Electrode by Graphene-multiwall Carbon Nanotubs/Beta Cyclodexterin-chitosan

Organophosphorus (OP) forms an important class of toxic compounds. They inhibit acetyl cholinesterase (AChE, EC 3.1.1.7) that results in respiratory and myocardial malfunctions. Pesticides could be accumulated in vegetables and fruits, so detection of them is very important. The goals of this study are decreasing detection time and detection limit of methyl parathion bioprobe. In this research ...

متن کامل

Automated enzyme-based diagonal capillary electrophoresis: application to phosphopeptide characterization.

Diagonal capillary electrophoresis is a form of two-dimensional capillary electrophoresis that employs identical separation modes in each dimension. The distal end of the first capillary incorporates an enzyme-based microreactor. Analytes that are not modified by the reactor will have identical migration times in the two capillaries and will generate spots that fall on the diagonal in a reconst...

متن کامل

Preparation and characterization of Graphene/Nickel Oxide nanorods composite

Graphene-based nanocomposites are newly emerged materials with a wide range of applications such as in supercapacitors electrode. The high conductivity and ability for passing electric current, makes Graphene an appropriate new item to be used in cells. Electroactive transition metal oxides, owing fast reversible redox pairs, are used to store electrical charge. Furthermore, the Graphene/NiO na...

متن کامل

Preparation and characterization of Graphene/Nickel Oxide nanorods composite

Graphene-based nanocomposites are newly emerged materials with a wide range of applications such as in supercapacitors electrode. The high conductivity and ability for passing electric current, makes Graphene an appropriate new item to be used in cells. Electroactive transition metal oxides, owing fast reversible redox pairs, are used to store electrical charge. Furthermore, the Graphene/NiO na...

متن کامل

Layer-by-layer assembly and UV photoreduction of graphene-polyoxometalate composite films for electronics.

Graphene oxide (GO) nanosheets and polyoxometalate clusters, H(3)PW(12)O(40) (PW), were co-assembled into multilayer films via electrostatic layer-by-layer assembly. Under UV irradiation, a photoreduction reaction took place in the films which converted GO to reduced GO (rGO) due to the photocatalytic activity of PW clusters. By this means, uniform and large-area composite films based on rGO we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 139 8  شماره 

صفحات  -

تاریخ انتشار 2014